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In biological systems, ‘growth’ describes the process by which a biological tissue increases 

(growth) or decreases (atrophy) its body mass or volume. Biological systems are composed of 

soft material and allow finite strain deformation. Within the framework of nonlinear elasticity, 

soft materials can be modeled with an incompressible or nearly incompressible hyper elastic 

constitutive law. We will consider the theory of [1], the geometric deformation tensor is 

decomposed as the product of a growth tensor (describing the local change of mass or volume) 

and an elastic tensor. Only the elastic part of the deformation tensor induces stresses. Plants are 

structure composed of beams, plates and shells (leaves, petal, ….). The internal structure of the 

microscopic heterogeneous microstructure is given in details in [2-5]. This is show that the 

transverse dimensions of the thin structure (plate, shell, beam….) is much bigger than the size 

of the heterogeneities. So, we homogenize first the microstructure heterogeneities by 

tridimensional homogenization and then we have to apply standard reduction techniques in 

order to get a model independent of the transverse dimension(s) of the thin structure [6-7]. 

However, we can find leaves of plant with wavy upper and lower faces of  the leaves (modelized 

as a plate, see figure 1 and 2). The size of the wavy heterogeneities is of the same order of the 

plate thickness. The full theory can be found in [8-9].  

Other works on growth theory can be found in [10-15]. Growth theory can obviously remove, 

and we obtain a modeling suitable for industrial classical heterogeneous structure. We have 

Abaqus, Ansys, Zset and Castem.  

Work for this PhD thesis 

It relies on numerical implementation and analysis of the result of the theory given previously. 

However, if numerical problem appears a bibliography study must ne made for solving it.  
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Figure 1: Wavy leaves of plant 
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Figure 2: Wavy leave of water lily 
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